TITANKOMPLEXE OFFENKETTIGER UND CYCLISCHER ARSANLIGANDEN: SYNTHESE UND KATALYTISCHE WIRKUNG (1)

Thomas Kauffmann*, Johann Ennen und Karlheinz Berghus Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-4400 Münster, West-Germany

Summary: The Ti(IV) complexes 1b, 2b, and 6 have been synthesized from new multi-electron ligands. 2b, after reduction with Et2AlCl, dimerizes isoprene mainly to 8c and trimerizes butadiene mainly to ttt-CDT. Ti(IV) compounds of the macrocyclic ligands 7a-c exhibit the same catalytic properties after reduction with Et2AlCl.

A) Synthese der Liganden und Komplexe

Arsanliganden für Übergangsmetalle haben gegenüber entsprechenden Phosphan=
liganden den Vorteil, nicht sauerstoffempfindlich zu sein. Wir haben daher
die bei der Synthese von Diphosphanliganden (2) bewährte Methode der doppel=
ten Ringöffnung (1) auf das gut zugängliche 1,3-Diarsolan 3 (3) übertragen
und die potentiellen Liganden 2a und 4 erhalten (Schema 2) (4). Bereits früher
war von uns durch einfache Ringöffnung der Ligand 1a synthetisiert worden
(Schema 1) (5).

Da sich Ti-Komplexe makrocyclischer Arsanliganden (6) gegenüber Dienen als katalytisch aktiv erwiesen (siehe unten), versuchten wir ausgehend von $\underline{1}\underline{a}$ und $\underline{2}\underline{a}$ definierte Ti(IV)-Komplexe zu gewinnen. Bei der Komplexierung von $\underline{1}\underline{a}$ war es vorteilhaft, den Cyclopentadienyl-Rest (= Cp) zunächst durch Silylie= rung zu desaktivieren, um so die Bildung des Titanocen-Derivates $\underline{1}\underline{c}$ zu verhindern.

Analog gelang problemlos die entsprechende Komplexierung des Liganden 2a. Den erhaltenen Komplexen schreiben wir die Strukturen 1b bzw. 2b zu. Aus den spektroskopischen Befunden (die 1H-NMR-Signale der an As gebundenen Phenyle sind nur schwach tieffeldverschoben) kann aber nicht der eindeutige Schluß gezogen werden, daß in 2b die As-Atome am Ti koordiniert sind.

Schema 2

Die Struktur 2b wird allerdings dadurch gestützt, daß CpTiCl $_3$ den stabi=len Komplex 5 (Gemisch von 5a und 5b) bildet (7).

Ein weiterer Ti(IV)-Komplex, der durch eine Ligandsynthese mit doppelter Ringöffnung leicht zugänglich ist, ist das Titanocen $\underline{6}$, in dem nach den spektroskopischen Befunden eine As-Ti-Bindung nicht vorliegt (8).

B) Katalysen

Nach Morikawa und Kitazume (9) wird bei der übergangsmetallkatalysierten Oligomerisierung von Isopren die Bildung höherer Oligomerer zurückgedrängt, wenn das Metallzentrum so abgeschirmt ist, daß nur noch zwei Isopren-Einheiten koordinieren können. Der dreizähnige Ligand im Reduktionsprodukt von ½b scheint diesen sterischen Voraussetzungen sehr gut zu genügen, denn bei der Einwirkung von Et2AlCl (20 Moläquivalente) und Isopren in Benzol auf ½b ent= standen neben einem Dimeren-Gemisch nur zu 10-15% höhere Oligomere. Gebildet wurde neben den "titantypischen" cyclischen Dimeren ½a und ½b hauptsächlich das offenkettige Dimere ½c, das bisher nur bei der Umsetzung mit Ni(acac) 2/AlEt3 erhalten wurde (10). Interessanterweise entstand das gleiche (1:1:2)-Dimeren-Gemisch (Tabelle 1) auch bei der aufeinanderfolgenden Einwirkung von Et2AlCl und Isopren auf die Komplexe ½a und ½b, die ganz andere Liganden ent= halten.

Tab. 1. Dimerisierung von Isopren (UZ = Umsatzzahl pro Ti-Atom).

Komplex	Komplex:Iso= pren	Dimerengesamt= ausbeute (%)	Dimerenverhältnis <u>&a</u> + <u>&b</u> : <u>&c</u>	UZ
<u>2</u> b	1:1000	90	0.94:1	450
<u>2</u> ₽	1:2000	84	0.83:1	840
<u>7</u> <u>a</u>	1: 400	77	0.91:1	154
<u>7</u> <u>a</u>	1:3000	74	0.97:1	1110
<u>7</u> <u>b</u>	1:3000	85	1.07:1	1275

$$\begin{array}{c} & & & \\ &$$

Zur Umsetzung mit <u>Butadien</u> wurden die in Tabelle 2 aufgeführten Komplexe in Benzol mit Et₂AlCl (10 Moläquivalente) reduziert. Beim Einleiten von Buta= dien in die erhaltene Lösung entstand hauptsächlich das ttt-CDT (all-trans-Cyclododecatrien) (Tabelle 2), das bei Anwendung von Ti-Katalysatoren in der Regel nicht oder neben ttc-CDT nur in ganz untergeordnetem Maß entsteht. Die starke Abschirmung durch die Arsanliganden führt also – unter gleichzeitiger starker Herabsetzung der Reaktivität – zu einem geänderten Katalysemechanis= mus. Eine nennenswerte Bildung von höheren Oligomeren wurde nicht festgestellt. Einen analogen Effekt – allerdings unter Bildung von 45% höheren Oligomeren – haben <u>Wilke</u> et al. (11) mit dem Katalysatorsystem 1 TiCl₄, 1 AlCl₃, 3 Et₂AlH, 2 Ph₂P erzielt (53% CDT, davon 85% ttt-CDT).

Komplex	Farbe der Lösung ^{a)}	Verhältnis ttt/ctt	UZ
<u>6</u>	olivgrün	_	0
<u>1</u> b	grün	0.5:1	80
<u>7</u> a_	rotbraun	0.6:1	79
<u>2</u> ₽	blau → grün	3.9:1	8
<u>7</u> ₽	blau → grün	~5:1	1
<u>7</u> ⊆	grün	~ 6 :1	30

Tab. 2. Cyclotrimerisierung von Butadien (UZ = Umsatzzahl pro Ti-Atom).

a) Nach Reduktion mit EtaAlCl.

Die Zusammensetzung und Struktur (abgesehen von den gemachten Einschrän-kungen) der erstmals erhaltenen Verbindungen $\underline{1}\underline{b}$, $\underline{2}\underline{a}$, $\underline{2}\underline{b}$, $\underline{4}$, $\underline{6}$, $\underline{7}\underline{a}$ - $\underline{7}\underline{c}$ sind durch Elementaranalysen und Spektren gesichert.

DANK

Wir danken dem Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen ("Vielelektronenübergangsmetall-Komplexe als Katalysa= toren") sowie dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

LITERATUR

- (1) Übergangsmetallaktivierte organische Verbindungen, 15. Mitteilung. -14. Mitteilung: Th. Kauffmann, E. Antfang, J. Olbrich, <u>Tetrahedron Lett.</u>, vorstehend.
- (2) Th. Kauffmann, J. Olbrich, Tetrahedron Lett., vorstehend.
- (3) A. Tzschach, G. Pacholke, Z. Anorg. Allg. Chem. 336, 270 (1965).
- (4) J. Ennen, Dissertation, Univ. Münster 1982.
- (5) Th. Kauffmann, J. Ennen, H. Lhotak, A. Rensing, F. Steinseifer, A. Woltermann, Angew. Chem. 92, 321 (1980); Angew. Chem., Int. Ed. Engl. 19, 328 (1980).
- (6) a: J. Ennen, Th. Kauffmann, Angew. Chem. 93, 117 (1981); Angew. Chem., Int. Ed. Engl. 20, 118 (1981); b: Th. Kauffmann, J. Ennen, Tetrahedron Lett. 1981, 5035.
- (7) Vgl. R.J.H. Clark, J.A. Stockwell, J.D. Wilkins, J. Chem. Soc., Dalton Trans. 1976, 120.
- (8) K. Berghus, Dissertation, Univ. Münster 1983.
- (9) H. Morikawa, S. Kitazume, Ind. Eng. Chem. Prod. Res. Dev. 18, 254 (1979).
- (10) Universal Oil Prod., Co. (Erf. E.L. De Young), US-Pat. 3522321 (28. 7. 1970) [Chem. Abstr. 73, 120139 (1970)].
- (11) H. Breil, P. Heimbach, M. Kröner, H. Müller, G. Wilke, <u>Makromol. Chem</u>. <u>69</u>, 18 (1963).

(Received in Germany 24 November 1983)